Module "CLT-Plate 1D - Continuous beam"

		Cchteligner – t	CCT-Mate 1D	
file Odt Window Rep				50m
CIT*	signer		5 P B 💻 🖼 🖬	
				and the second se
Ceneral	Draits include	Row Vibrations	CN11110208	
levier dan R +	It itser-aldinest © C(7-products with technical approvals	Vibration verification		
Stractural system	My CL7 creat and/hers	high requirements .		
Number of spans 1 +	-	6 14 5		
Cantilever left	Number of Isyan 3 .	Presidential advantation		
Cantilever right	Layer Thickness Orientation Maturial	Concrete topping) stiffners		
Exposet a MARM	2 30 mm 90 GL24m	4 1.1 44		•
8 0.0 0.114 m	4 30 mm 90 GL24F	E 16,000.0 R/mm*	100 m.	
	6 40 mm 0 CL246*	"moved 2122.8 sheet/on	P	-1
	Midth 1.00000 mm v Thidunese 1000 mm v	Support © 2-sided # 4-sided	Stadual auton	
		b 5.8 m		
		h _e 3.31 m		
Laadi Halid Sean	Au Au Au Auror	h https://www.iteratural		
1 1 1 0	BITHON THAT INCOME			
Held Noted	Natural Composition	No. Additional Magness Mag	4	
			In 199	-
			-	
A T Composition solves 1 Medication 1	family.			
Utilization ratio	Print		(Influence rate) tensors (Second In and of the 1 Indometical	
015			And the Particle Concerns of Management	
banding for DATE	Read 5.8 Marc 2.1 m And amond continuine 1.57 Bas			
Shar by 18.5.	Read 0.8 disc 1.0 m Partyneral Continuous 1.17 Page 1			
Bearing pressers Page 8.75	Paul 0.8 How to a further of the later of the second secon			
945			<u>≙</u>	
Defector n. ELTR	New C.R. Mar. 2.1 is Find defendences and the market in		<u>⊢•</u> ,	
Vitation Vitation vehicles	leaders according to DNI DESE to not Fulfilled or more accurate verificat leaders according to DNI DNN, 1, 1 fulfilled		Reading parameters	
Vibration verifi	lation according to ON 8 1995-1-1, NA 2014-11-15 failfilled		Abuse governing (before paraming	
Vibration verifi	lation according to Hamm Highler failfilled		Area to which the results may differ them the exact eduction	
vitation year	same according to modified frame, statute failuted			
A. MILD Cruz, Inflationane 24		www.holicheadistic.texts.at		Scotars becaud at 📫 🛪

Input data

The input is divided into:

- general information about the project and the considered structural element
- definitions of the structural system
- definitions of the cross section
- input of the loads
- informations about fire and vibration parameters

A graphical representation of the input data is shown on the right side. This offers the possibility for a fast check of the input data.

General

The input field "General" defines the service class. It is only allowed to use CLT elements in areas of service class 1 and 2.

- Service class 1 (interior service condition) is in general consistent with a common utilisation of living spaces.
- Service class 2 (protected exterior service condition) is generally used for open but roofed structures.

General		
Service class	1 🔻	

Structural system

In the current version a continuous beam with a maximum of 7 spans including a cantilever on the left and right side can be analysed. The supporting width and span of field (via x-value in the table) can be defined within this input field.

S	Structural system						
	Number of spans 1 💌						
	Cantilever left						
	Cantilever right						
	Support	x	Width				
	A	0 m	0.154 m				
	B 5 m 0.154 m						
	A 0 m 0.154 m B 5 m 0.154 m						

Cross section

The cross section can be defined by the user or by choosing a typical cross section of a proprietary CLT product. There is also the possibility to save own CLT cross sections in a library. The elements are subdivided by the number of layers.

If a user-defined cross section is entered, the thickness and orientation of each layer can be changed. Furthermore, the material can be changed for all layers. The thickness of each layer has to be within the range of 6.0 mm to 45 mm. In the case of proprietary CLT products, the strength class of lumber and the orientation can be changed. If the orientation is changed, the whole cross section is rotated.

		-				
Number of layers 5 💌						
Layer	Thickness	Orientation	Material			
1	40 mm	0	GL24h*			
2	20 mm	90	GL24h*			
3	40 mm	0	GL24h*			
4	20 mm	90	GL24h*			
5	40 mm	0	GL24h*			
Width 1,000 + mm V Thickness 160 + mm V						

The width of the CLT plate strips can be also defined in this field. The default value is set to 1 m. The

thickness of the CLT plate is calculated automatically based on the thickness of the single layers.

The ratio of board thickness to board width can also be changed here. The default setting is 1:4.

My CLT cross sections

By clicking the button the current cross section can be stored in the library and be retrieved by selecting "My CLT cross sections" later on.

The library can be displayed with the button

Test 1	Project name Test 1						
Test 2	Lawer	Thickness	Orientation	Material			
Test 3	Layer	22 mm	Offentation	Clotha			
	1	23 mm	0	GLZ4h*			
	2	20 mm	90	GL24h			
	3	40 mm	0	GLZ4N ⁻			
		4 20 mm 90					
		1,000 mm		- 128 mm			

- The edit mode can be entered by clicking on . Currently, only the name of the stored cross section can be changed.
- With the changes are saved.
- With et al. the chosen cross section in the sidebar can be removed from the library.
- With cross sections from a csv file can be imported.
- With the cross sections from the library can be exported to a csv file.

My materials

With the button with the material library can be displayed.

• • •	My materials			
Saved materials				
Mat 1	Project name Mat 1			
	bending strength	24	N/mm²	
	tensile strength parallel	16.5	N/mm ²	
	tensile strength perpendicular	0.5	N/mm ²	
	compressive strength parallel	24 7	N/mm ²]
	compressive strength perpendicular	2.7	N/mm ²]
	shear strength	3	N/mm ²	Ι
	rolling shear strength	1.25	N/mm²]
	Youngs modulus parallel	11,600 -	N/mm²	
	5%-quantile from Youngs modulus parallel	9,667	N/mm ²	
	Youngs modulus perpendicular	0 7	N/mm ²]
	shear modulus	720	N/mm ²]
	rolling shear modulus	72	N/mm ²]
	density	380 -	kg/m ³]
	density mean value	500 -	kg/m ³	
	in plane shear strength	5.5	N/mm ²]
	torsional strength	2.5	N/mm ²]
	bending strength in-plane	21	N/mm ²]
				0

- With where the edit mode can be entered.
- With the changes are saved.
- With et al. the chosen material in the sidebar can be removed from the library.
- With materials from a csv file can be imported.
- With the materials from the library can be exported to a csv file.

1. row: description of the parameters 2. row: units of the parameters 3. row: value delimiter: ";"

Example:

Name;f_m,k;f_t,0,k;f_t,90,k;f_c,k;f_c,90,k;f_v,k;f_r,k;E_0;E_0,05;E_90;G;G_r;rho_k;rho_mea n;f_v,k,IP;f_T,k;f_m,k,IP ;N/mm2;N/m /mm2;kg/m3;kg/m3;N/mm2;N/mm2;N/mm2 Mat 1;24;16.5;0.5;24;2.7;3;1.25;11600;9667;0;720;72;380;500;5.5;2.5;21

The user-defined materials are then displayed in the material selection list.

Material	
Mat 1 (User-defined)	-
Spruce-Pine-Fir No.3 E90=0	
Northern No.1/No.2 E90=0	
Northern No.3 E90=0	
CL 24h	
CL 28h	
ON_B_1995_1_1_2015	
proHolz 2016	=
Mat 1 (User-defined)	•

Optimization of layup

Use the button **Setal Optimise cross section** to display the window for layup optimization.

		Optimisation					
onsider in the optimisatio	n:						
Producer		Number of lay	Number of layers				
best wood SCHNEIDER	KLH	3 🖬 5	6 🗹 7 🗌 8 🛄 9	11			
Cross Timber Systems	Mayr-Melnhof H	olz Plate thicknes	z Plate thickness				
Derix	Piveteaubois	min 60 ÷	mm max 320 ÷ mm				
Eugen Decker	🔤 Stora Enso	Saved cross se	ections				
Hasslacher		My CLT cro	Options				
		Options					
		Outer cross	s layers	Double layers			
		Vibration v	erification according to I	EN			
Bergdonne	Cross section	Plate thickness	Governing proof	Utilisation ratio			
Producer	Closs section	riate tinekiress		ounsation fatto			
KLH	180mm 5s DL	180 mm	Vibration	99.2 %			
KLH KLH	180mm 5s DL 190mm 5s DL	180 mm 190 mm	Vibration Vibration	99.2 % 95.4 %			
KLH KLH KLH	180mm 5s DL 190mm 5s DL 200mm 5s DL	180 mm 190 mm 200 mm	Vibration Vibration Vibration	99.2 % 95.4 % 90.1 %			
KLH KLH KLH KLH KLH	180mm 5s DL 190mm 5s DL 200mm 5s DL 220mm 7s DL	180 mm 190 mm 200 mm 220 mm	Vibration Vibration Vibration Vibration	99.2 % 95.4 % 90.1 % 85.3 %			
KLH KLH KLH KLH KLH KLH	180mm 5s DL 190mm 5s DL 200mm 5s DL 220mm 7s DL 240mm 7s DL	180 mm 190 mm 200 mm 220 mm 240 mm	Vibration Vibration Vibration Vibration Vibration	99.2 % 95.4 % 90.1 % 85.3 % 78.4 %			
Producer KLH KLH KLH KLH KLH KLH KLH	180mm 5s DL 190mm 5s DL 200mm 5s DL 220mm 7s DL 240mm 7s DL 180mm 7s DL	180 mm 190 mm 200 mm 220 mm 220 mm 240 mm 180 mm	Vibration Vibration Vibration Vibration Vibration Vibration	99.2 % 95.4 % 90.1 % 85.3 % 78.4 % 93.9 %			
Producer KLH KLH KLH KLH KLH KLH KLH KLH KLH	180mm 5s DL 190mm 5s DL 200mm 5s DL 220mm 7s DL 240mm 7s DL 180mm 7ss DL 200mm 7ss DL	180 mm 190 mm 200 mm 220 mm 220 mm 180 mm 200 mm	Vibration Vibration Vibration Vibration Vibration Vibration Vibration	99.2 % 95.4 % 90.1 % 85.3 % 78.4 % 93.9 % 82.8 %			
Producer KLH	180mm 5s DL 190mm 5s DL 200mm 5s DL 220mm 7s DL 240mm 7s DL 180mm 7ss DL 200mm 7ss DL 220mm 7ss DL	180 mm 190 mm 200 mm 220 mm 240 mm 180 mm 200 mm 220 mm	Vibration Vibration Vibration Vibration Vibration Vibration Vibration	99.2 % 95.4 % 90.1 % 85.3 % 78.4 % 93.9 % 82.8 % 73.1 %			
Producer KLH KLH	180mm 5s DL 190mm 5s DL 200mm 5s DL 220mm 7s DL 240mm 7s DL 280mm 7s DL 200mm 7ss DL	180 mm 190 mm 200 mm 220 mm 240 mm 180 mm 200 mm 220 mm 240 mm	Vibration Vibration Vibration Vibration Vibration Vibration Vibration Vibration	99.2 % 95.4 % 90.1 % 85.3 % 78.4 % 93.9 % 82.8 % 73.1 % 65.8 %			
Producer KLH KLH KLH KLH KLH KLH KLH KLH	180mm Ss DL 190mm Ss DL 200mm Ss DL 220mm Ss DL 220mm 7s DL 240mm 7s DL 280mm 7ss DL 200mm 7ss DL	180 mm 190 mm 200 mm 220 mm 240 mm 200 mm 220 mm 240 mm 220 mm 220 mm	Vibration Vibration Vibration Vibration Vibration Vibration Vibration Vibration Vibration	99.2 % 95.4 % 90.1 % 85.3 % 78.4 % 93.9 % 82.8 % 73.1 % 65.8 % 61.6 %			
Producer KLH KLH KLH KLH KLH KLH KLH KLH	180mm 5s DL 190mm 5s DL 200mm 5s DL 200mm 7s DL 240mm 7s DL 240mm 7s DL 280mm 7ss DL 200mm 7ss DL 240mm 7ss DL 260mm 7ss DL 260mm 7ss DL 260mm 7ss DL 280mm 7ss DL	180 mm 190 mm 200 mm 220 mm 240 mm 180 mm 200 mm 220 mm 220 mm 220 mm 220 mm 220 mm	Vibration Vibration Vibration Vibration Vibration Vibration Vibration Vibration Vibration Vibration Vibration	99.2 % 95.4 % 90.1 % 85.3 % 78.4 % 93.9 % 82.8 % 73.1 % 65.8 % 61.6 % 58.2 %			
Producer KLH KLH KLH KLH KLH KLH KLH KLH	180mm 5s DL 190mm 5s DL 200mm 5s DL 220mm 7s DL 240mm 7s DL 240mm 7ss DL 200mm 7ss DL 220mm 7ss DL 240mm 7ss DL 240mm 7ss DL 260mm 7ss DL 260mm 7ss DL	180 mm 190 mm 200 mm 220 mm 240 mm 200 mm 220 mm 220 mm 220 mm 220 mm 220 mm 220 mm	Vibration Vibration Vibration Vibration Vibration Vibration Vibration Vibration Vibration Vibration Vibration	99.2 % 95.4 % 90.1 % 85.3 % 78.4 % 93.9 % 82.8 % 73.1 % 65.8 % 61.6 % 58.2 %			

With the help of this tool, the possible layups can be determined for the given system and load situation. The optimization can be restricted with regard to producers, number of layers or by means of limits for the panel thickness. Furthermore, outer cross layers or double layers can be included or excluded. With the option "Vibration verification according to EN" the base document is included in the vibration check or not.

With the buttons "Start" and "Stop" the calculation is controlled. Please be patient, depending on the selected parameter the calculation may take a little longer.

The possible setups are then displayed in the table and the selected setup can be transferred to the main window by clicking the "Choose the selected cross section" button.

Loads

The loads are divided into the dead load (weight of the plate) $(g_{0,k})$, permanent loads $(g_{1,k})$, imposed load (q_k) , snow load (s_k) and wind load (w_k) . This classification is necessary to automatically carry out calculations for different load case combinations.

The plate weight is calculated automatically. The calculation method can be selected in the settings/preferences window. The default calculation method is in accordance with ON B 1991-1-1. A unit weight of 5.5 kN/m³ is assumed in the calculation. However, the unit weight may also be

Last update: 2020/03/24 en:clt:hotspot:software:cltdesigner:manual:modul_plate1d_continuousbeam https://www.bspwiki.at/doku.php?id=en:clt:hotspot:software:cltdesigner:manual:modul_plate1d_continuousbeam&rev=1585046322

calculated using:

- calculation based on the mean value of density of the chosen material
- calculation based on a user-defined density

When entering the imposed loads, one of the following categories has to be chosen:

- A: Areas for domestic and residential activities
- B: Office areas
- C: Areas where people may congregate (with the exception of areas defined under category A, B and D)
- D: Shopping areas
- E: Areas for storage and industrial activities
- F: Traffic and parking areas for light-duty vehicles
- G: Traffic and parking areas for medium-duty vehicles
- H: Roofs

When entering the snow load, the country code or an altitude above sea level where the structure will be located has to be specified:

- < 1000 m
- > 1000 m
- FIN, IS, N, S

The span of each field can also be modified in the table of distributed loads.

Concentrated loads can be entered in the second table. The position can be defined whether by the local or global x-coordinate.

Loaus								
Field	Span	g _{0,k}	g _{1,k}	q _k	Category	s _k	Altitude/Region	w _k
1	3.5 m	0.55 kN/m	0.58 kN/m ²	1.2 kN/m ²	A			
2	4 m	0.55 kN/m	0.58 kN/m ²	1.2 kN/m ²	A			
3	4.25 m	0.55 kN/m	0.58 kN/m ²	1.2 kN/m ²	A			
Field	x _{global}	× _{lokal}	G _{1,k}	Q _k	Category	S _k	Altitude/Region	W _k

Fire

By choosing "Fire above" and/or "Fire below" in the tab "Fire" a structural fire design has to be carried out. The "Fire duration" is specified in minutes and can be increased (or decreased) by increments of 30 minutes by pressing the up (or down) arrows, or defined by entering a specific duration between 0 minutes and 240 minutes in the allotted box. By ticking the box next to "Fire protection" a layer of fire protection is added to the plate, but the effective protection time of the protection layer needs to be defined.

https://www.bspwiki.at/

Fire Vibrations				
Fire above				
🗹 Fire below				
Fire duration 30 📩 minutes				
✓ Fire protection system				
🖌 below				
t _{ch} 20 🗧 minutes				
$t_f \ge 0$ minutes $\mathbf{v} t_f = t_{ch}$				
k ₂ 1				
k ₃ 2 ;				
Heat resistant adhesive				
✓ consider falling off of charred layers				
Without gaps or with bonded edges				
k _{fire} 1.15				
d ₀ 7 🔓 mm				
Charring rate 0.80 🗟 mm/min				

For a user-defined cross section, options are given for specifying heat resistant adhesives, presence of grooves, and whether the layers are edge-glued. For proprietary CLT products both values are set automatically and they cannot be changed.

The values k_{fire} (conversion factor 20%-quantiles) and d_0 (layer thickness to take into consideration the influence of temperature exposure) are pre-set and cannot be changed. The charring rate is dependent on the option edge glued or without groove. For a user-defined cross section this value can be changed.

Vibrations

The tab "Vibrations" allows for vibration verification.

Fire V	ibrations					
Vibration verification						
normal requirements 🔹						
ζ 3.0 %						
Consideration of screed (concrete topping) stiffness						
d	6.0	cm				
E	26,000.0	N/mm²				
Elscreed	468	kNm²/m				
Support	○ 2-sided	4-sided				
b	5.0] m				
b _w	3.13	m				

For the vibration verification the following specifications are of importance:

- high or normal requirements? This choice will have an influence on the limit values.
- modal damping factor
- consideration of the screed (concrete topping) stiffness
 - thickness of the screed (concrete topping)
 - $\circ\,$ modulus of elasticity of the screed (concrete topping)
- support (2-sided or 4-sided)
- room width b perpendicular to the load carrying direction

The effective width b_w of the chosen cross section used by the stiffness criteria will be specified.

Results and output

Load combinations are compiled based on the input loads entered in the "Loads" field. The respective k_{mod} - and k_{def} -values can be determined automatically based on the classification of loads (plate weight, wind load, etc.).

Cross section values

Output values generated in the tab "Cross section values" field include the effective stiffness (depending on the chosen calculation method), the position of the centre of mass for the full cross section and also for the charred cross section in case of structural fire design.

Summary of the results

A summary of the verifications can be retrieved via the tab "Verifications". The utilisation ratios for various limit states are colour-coded indicating if the verification is fulfilled (green), not fulfilled (red) or a more accurate verification is needed (yellow). The locations of the maximum utilisation ratio and the governing combinations are compiled in the same way.

Cro	ss section values	Verification	Details	1		
Util	isation ratio					
UL	5					
	Bending	η _M 28.3	% k _{mod}	0.8 at	x = 7.5 m	n Fundamental combination: 1.35 " $g_{0,k}$ + 1.35 " $g_{1,k}$ + 1.50 " 1.00 " g_k
	Shear	η _V 13 %	k med	0.8 at	x = 7.5 m	n Fundamental combination: $1.35^{\circ}g_{0,k} + 1.35^{\circ}g_{1,k} + 1.50^{\circ}1.00^{\circ}q_{k}$
	Bearing pressure	η _{c,90} 5%	k _{mod}	0.8 at	x = 7.5 m	n Fundamental combination: 1.35 " $g_{0,k} + 1.35$ " $g_{1,k} + 1.50$ " 1.00 " g_k
SLS						
	Deflection	η _w 75.8	% k _{def}	0.85 at	x = 9.83	m Final deformation $w_{net,fin} t = \infty$: $g_{0,k} + (g_{0,k})_{creep} + g_{1,k} + (g_{1,k})_{creep} + 1.00^{\circ}q_k + (0.30^{\circ}q_k)_{creep}$
	Vibration	Vibration ve	rification as	cording to D	IN 1052 fu	alfilled
		Vibration ve	rification as	cording to EM	1995-1-	-1 fulfilled
		Vibration ve	rification as	cording to O	N B 1995-	-1-1/NA:2009-07 fulfilled
		Vibration ve	rification as	cording to H	amm/Richt	iter fulfilled
		vibration ve	nncation as	cording to m	odined ha	amm/Richter fulfilled
Util	sation ratio in case	e of fire				
UL	Panding Days	5.7.W k	1.0	at 11 - 7 5	Arridan	
	benuing 4M,6	more that the second se	1.0	at x = 7.5	- Acciden	and complexities = + = + 0.301
	Shear n _{V,fi}	5.1 % K _{mol}	1.0	at x = 7.5	m Acciden	ntal combination: $g_{0,k} + g_{1,k} + 0.50$ · q_k

The tab "Utilisation" shows the distribution of the governing utilisation ratios along the beam. Areas in which the results may differ from the exact solution are marked here.

Utilisation ratio Stresses Stresses in case of fire Deformations
├ ─► x
Bending governing
Deflection governing
Bending governing in case of fire Shear governing in case of fire
Area in which the results may differ from the exact solution

The tab "Stresses" shows the governing stresses resulting from the ULS verification. If a structural fire design was carried out, the governing stresses in case of fire are shown in the tab "Stresses in case of fire"

The tab "Deformations" shows the deformed system or the envelope given by the minimum and maximum deformation resulting from the governing SLS verification.

Detailed results

The detailed results can be retrieved in the tab "Details". The "tree" on the left side offers the possibility to choose the respective load case or combination.

update: 2020/03/24 en:clt:hotspot:software:cltdesigner:manual:modul_plate1d_continuousbeam https://www.bspwiki.at/doku.php?id=en:clt:hotspot:software:cltdesigner:manual:modul_plate1d_continuousbeam&rev=1585046322

The results of this choice (internal forces, deformations) are then shown for each of the calculation sections of each field (number depending on the information in the settings) in the table on the top right.

Field	х	Minux	M	v	Maria	M	v	Vmax	M	v	Vmin	H	v
1	0.0 m		-0.00 kN-m	1.67 kN		-0.00 kN-m	5.03 kN		-0.00 kN-m	5.03 kN		-0.00 k/V/W	1.67 kN
1	0.1 m		0.49 kN-m	4.70 kN		0.16 kN-m	1.51 kN		0.49 kN-m	4.70 k/v		0.16 km/m	1.51 kN
1	0.2 m		0.54 kN m	4.37 kN		0.30 kN m	1.36 kN		0.54 kN m	4.37 kN		0.30 k/s m	1.36 kN
1	0.3 m		1.36 kH m	4.03 kN		0.43 kN m	1.21 kN		1.36 kN-m	4.03 kW		0.43 k/9-m	1.21 kN
1	0.4 m		1.75 kH m	3.70 kN		0.54 kN-m	1.05 kN		1.75 kN-m	3.70 kN		0.54 kN m	1.05 kN
1	0.5 m		2.10 kH-m	3.37 kN		0.64 kH m	0.90 kN		2.10 kH-m	3.37 kW		0.64 kW-m	0.90 kN
1	0.6 m		2.42 kH-m	3.04 kN		0.72 kH-m	0.75 kN		2.42 kH-m	3.04 kW		0.72 kW-m	0.75 kN
1	0.7 m		2.71 kH-m	2.70 kN		0.79 kH-m	0.60 kN		2.71 kH-m	2.70 kW		0.79 kW-m	0.60 kN
1	0.8 m		2.96 kH-m	2.37 kN		0.84 kH-m	0.44 kN		2.96 kH-m	2.37 kN		0.84 kW-m	0.44 kN
1	0.9 m		3.18 kH-m	2.04 kN		0.88 kN-m	0.29 kN		2.18 kH-m	2.04 kN		0.88 kH-m	0.29 kN
1	1.0 m		3.17 kH-m	1.71 kN		0.90 kN-m	0.14 kN		3.37 kH-m	1.71 89		0.90 km-m	0.14 kN
1	1.1.m		8.52.88-m	1.32 hM		0.91 kN-m	-0.01 879		8.52.58-m	1.37.89		0.91 879-78	-0.01 kW
1	1.2 m		8.64 10.01	1.04 kM		0.90 kN-m	-0.17 kN		8.64189-01	1.04 km		0.90 10-0	-0.17 kN
1	1.5 m		3.71 kN m	0.71 kM		0.88.10.01	-0.12 km		5.71 kN m	0.71 km		0.88105-0	-0.57 kN
1	14 m		3.7518.01	0.58 kM		0.84 kN m	-0.47 kN		5.75 kN m	0.38 km		0.84 100 m	-0.47 kN
1	1.5 m		5.81.65.m	0.04 kM		0.78 kN m	-0.62.10		5.81 kN m	0.04 km		0.78 km/m	-0.67 kN
	1.6 m		3.75 101.00	-0.29 km		0.71 kH m	-0.78 kN		1.67 kB m	-0.17 kM		2.83.189.00	-0.89 kN
1	1.7 m		3.75 kH m	-0.62.88		0.63 kH m	-0.91.95		1.65 kH m	-0.33 kM		2 73 25 m	-1.22 kN
	1.6 m		3.67 kH m	-0.05 kW		0.51 kH m	-1.05.85		1.61 kH m	-0.45 kM		2.50 km/m	-1 55 kN
	1.0 m		3.56.101.00	-1.39.89		0.41 kH m	-1.23.89		1.55 kHi.m	-0.63 kM		2.41.88.00	-1.69 kN
	2.0 m		1.41.00.01	-1.62.89		0.26 kH m	-1.10.20		1.46.66.00	-0.28 kM		2.21.86.0	-3.22 kN
	21.0		3.33.66.00	-1.65.200		0.13 kH m	-1 54 210		1.40.55.00	-0.94 kM		1.67.200.00	-3 55 km
	2.2 m		2.03.041.01	-2.26.80		0.03.0010	-1.60.200		1.36.54.0	-1.08.54		1.70 89-00	-3.09.64
	22.0		2.72.544.00	-2.6.2.6.9		-0.11100-00	-1.04.00		1.16.54.00	-1.34.64		1.10.000	-2.00 80
-	2.5 m		2.55.54.0	-2.52 879		-0.21 6918	-1.00 101		1.05.55.00	-1.29.14		1.05.100.00	-3.55 84
	2.4.61		2.30 0919	-2.55 874		-0.40 0418	-2.00 84		0.85 59 69	-1.55 kM		0.68.69.00	-3.55 84
-	2.5 m		1.04.00.00	-3.20 874		0.00 0919	-2.15 89		0.70 09 11	-1.22 8.9		0.00 0110	-2,00 814
-	2.6 m		1.04.09.09	-3.61.6%		10.85 09 0	-2.30 89		0.74 04 8	-1.79 MM		0.28 6918	-9,22,8%
-	2.7 m		1.00.010	- 5.55 879		-1.00 09/1	-2.42.879		0.55 (0) (1	-1.02 8.9		-9.10 EV-18	-9.55 89
-	2.0 m		1.15 (9) (1	-9.20 KW		-1.32 8949	-2.51.69		0.37 (0+41	-2.00 KN		-0.05 89/8	-4,00 8%
-	2.9 m		0.11104-0	-4.51.69		-1.59 KH-M	-2.76 KM		0.16 (0+m	-1.19 1.9		-1.14 EV/R	-5.21.6%
	3.0 m		0.11 (0+4)	-9.59 KW		-L.B./ KN+/II	-2.91 89		-0.06 KH-M	-1.31 KN		-1.07 KN/M	-3.32 89
-	3.1 m		-0.10 09-10	-2.40 KN		-2.25 KH-R	-5.80 KN		-0.10 (0)-01	-1.46 KN		-2.0 69/8	-5.00.6%
-	3.2 m		-0.56 KH-H	-2.01.01		-2.83 KH-18	-9.21 874		-0.56 KH-11	-2.02.8.9		-2.85 KIPH	-0.21.6%
-	3.3 N		-0.81 69-19	-2.37 KN		-3.49 KH-H	-9.54 874		-0.83 KH-H	-1.77 KN		- 0.49 KM-R	-8.34 85
	3.4 m		-1.11 (04-0)	-2.52.89		-6.16 879-08	-9.88 874		-1.11 (0)-01	-2.92 kN		-4.16 69/18	-6.88 KV
-	3.3 N		-1.41 (9)-0	- 5.07 KW		-1.88 879-18	-7.21.89		-1.41 89498	-3.07 IN		-4.86 89/8	-7.21.69
- 2	3.5 m		-1.41 89-08	2.19 kN		-1.88 174-18	6.92 kN		-4.88 10-11	0.52 kN		-1.41 89/18	2.38 kN
2	3.6 m		-1.20 494-08	2.01 kN		-4.19 89 19	6.55 kN		-4.19 89 19	0.58 kW		-1.20 kW/#	2.01 kN
2	3.7 m		-1.01 kH m	1.86 kN		-5.55 kH m	6.25 kN		-3.55 kN-m	0.23 kN		-1.01 kWre	1.86 kN
2	5.8 m		-0.83 kH+m	1.71 kN		-2.94 kH m	5.92 kN		-2.94 kH m	5.92 kW		-0.85 kN/m	1.71 kN
2	3.9 m		-0.67 kW-m	1.55 kN		-2.36 kH-m	5.59 kN		-2.36 kN-m	5.59 kW		-0.67 kN-m	1.55 kN
2	4.0 m		-0.46 kH-m	4.15 kN		-1.88 kH-m	2.51 kN		-1.82 kH-m	5.25 kW		-0.52 kN-m	1.40 kN
2	4.1 m		-0.07 kW-m	3.81 kN		-1.63 kH-m	2.35 kN		-1.31 kH-m	4.92 kW		-0.39 kW-m	1.25 kN
2	4.2 m		0.30 kN-m	3.45 kN		-1.40 kN-m	2.20 kN		-0.84 kH-m	4.59 kN		-0.27 kW-m	1.10 kN

By choosing the desired calculation section in the table, the loads and supporting forces, the distribution of internal forces and the deformations as well as the calculated stresses are shown under different tabs on the bottom right.

update: 2020/03/24 11:38

Stresses	and	utilisation	ratios	of	single	la	/ers

M max

Layer	σ _M	η _Μ	τ _V	η _V
# 1	4.046 N/mm ²	23.9 %	0.005 N/mm ²	0.3 %
# 2	0.000 N/mm ²	0.0 %	0.005 N/mm ²	0.6 %
# 3	0.809 N/mm ²	4.8 %	0.005 N/mm ²	0.3 %
# 4	-0.000 N/mm ²	0.0 %	0.005 N/mm ²	0.6 %
# 5	-4.046 N/mm ²	23.9 %	0.005 N/mm ²	0.3 %

M min

	°м	η _M	τ _V	η _ν
# 1	1.174 N/mm ²	6.9 %	0.008 N/mm ²	0.4 %
# 2	0.000 N/mm ²	0.0 %	0.008 N/mm ²	1.0 %
# 3	0.235 N/mm ²	1.4 %	0.009 N/mm ²	0.4 %
# 4	-0.000 N/mm ²	0.0 %	0.008 N/mm ²	1.0 %
# 5	-1.174 N/mm ²	6.9 %	0.008 N/mm ²	0.4 %

V max

Layer	σ _M	η _M	τ _V	η _V
# 1	3.471 N/mm ²	20.5 %	0.010 N/mm ²	0.5 %
# 2	0.000 N/mm ²	0.0 %	0.010 N/mm ²	1.2 %
# 3	0.694 N/mm ²	4.1 %	0.010 N/mm ²	0.5 %
# 4	-0.000 N/mm ²	0.0 %	0.010 N/mm ²	1.2 %
# 5	-3.471 N/mm ²	20.5 %	0.010 N/mm ²	0.5 %

V min

Layer	σ _M	η _M	τ	η _V
# 1	1.750 N/mm ²	10.4 %	0.003 N/mm ²	0.2 %
# 2	0.000 N/mm ²	0.0 %	0.003 N/mm ²	0.4 %
# 3	0.350 N/mm ²	2.1 %	0.003 N/mm ²	0.2 %
# 4	-0.000 N/mm ²	0.0 %	0.003 N/mm ²	0.4 %
# 5	-1.750 N/mm ²	10.4 %	0.003 N/mm ²	0.2 %

From:

https://www.bspwiki.at/ - BSP Wiki

Permanent link: https://www.bspwiki.at/doku.php?id=en:clt:hotspot:software:cltdesigner:manual:modul_plate1d_continuousbeam&rev=1585046322

Last update: 2020/03/24 11:38

