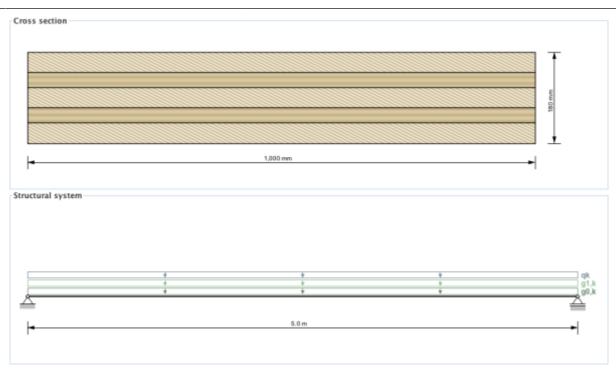
Module "CLT-Plate 1D - Continuous beam"


ace data # Box - Addied 0 ((f.gradecy) with spithol agenus) If relation inf state Contraction If addies If addies If relation inf state Contraction If addies If addies If relation inf state Image:	ie fait Window Palp		Ct3belgner - Ct3-Plans 18
		signer	
Andrés per la	Alad Here diasa in acchard sectors Constituent for Constituent for Constituent for Southeam right Taggeret A BASA Southeam right Southeam righ	Notes section Non-section Non-section	
	Radios secis 5- Bending Ng CLAS Shar Ng CLAS Shar Ng CLAS Shar Ng CLAS Shar Ng CLAS Shar Ng CLAS Vision vision Vision vision Vision vision Vision vision Vision vision Vision vision	$\label{eq:second} \begin{array}{ c c c c c c c c c c c c c c c c c c c$	

Input data

The input is divided into:

- general information about the project and the considered structural element
- definitions of the structural system
- definitions of the cross section
- input of the loads
- informations about fire and vibration parameters

A graphical representation of the input data is shown on the right side. This offers the possibility for a fast check of the input data.

General

The input field "General" defines the service class. It is only allowed to use CLT elements in areas of service class 1 and 2.

- Service class 1 (interior service condition) is in general consistent with a common utilisation of living spaces.
- Service class 2 (protected exterior service condition) is generally used for open but roofed structures.

General		
Service class	1 🔻	

Structural system

In the current version a continuous beam with a maximum of 7 spans including a cantilever on the left and right side can be analysed. The supporting width and span of field (via x-value in the table) can be defined within this input field.

S	Structural system						
	Number of spans 1 💌						
	Cantileve	er left					
	Cantileve	er right					
	Support	x	Width				
	A	0 m	0.154 m				
	В	5 m	0.154 m				

Cross section

The cross section can be defined by the user or by choosing a typical cross section of a proprietary CLT product. There is also the possibility to save own CLT cross sections in a library. The elements are subdivided by the number of layers.

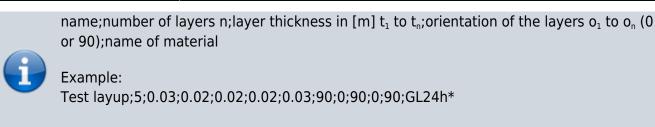
If a user-defined cross section is entered, the thickness and orientation of each layer can be changed. Furthermore, the material can be changed for all layers. The thickness of each layer has to be within the range of 6.0 mm to 45 mm. In the case of proprietary CLT products, the strength class of lumber and the orientation can be changed. If the orientation is changed, the whole cross section is rotated.

		•	
lumber of lay	ers 5 💌		
Layer	Thickness	Orientation	Material
1	40 mm	0	GL24h*
2	20 mm	90	GL24h*
3	40 mm	0	GL24h*
4	20 mm	90	GL24h*
5	40 mm	0	GL24h*
	ickness / width t		160 🗧 mm 💌

The width of the CLT plate strips can be also defined in this field. The default value is set to 1 m. The

thickness of the CLT plate is calculated automatically based on the thickness of the single layers.

The ratio of board thickness to board width can also be changed here. The default setting is 1:4.


My CLT cross sections

By clicking the button the current cross section can be stored in the library and be retrieved by selecting "My CLT cross sections" later on.

The library can be displayed with the button

Test 1	Project name Test 1			
Test 2 Test 3	Layer	Thickness	Orientation	Material
lest 3	1	23 mm	0	GL24h*
	2	20 mm	90	GL24h*
	3	40 mm	0	GL24h*
	4	20 mm	90	GL24h*
	5	23 mm	0	GL24h*
	-	1,000 mm		→ 125 mm

- The edit mode can be entered by clicking on <a>Image: Currently, only the name of the stored cross section can be changed.
- With the changes are saved.
- With et al. the chosen cross section in the sidebar can be removed from the library.
- With cross sections from a csv file can be imported.
- With the cross sections from the library can be exported to a csv file.

My materials

With the button with the material library can be displayed.

	,	My materials			
Saved materials					
Mat 1	Project name Mat	1			
	ben	ding strength	24	N/mm²	
	tens	ile strength parallel	16.5	N/mm²	
	tens	ile strength perpendicular	0.5	N/mm²	
	com	pressive strength parallel	24 👘	N/mm²	
	com	pressive strength perpendicular	2.7	N/mm²]
	she	ar strength	3 👘	N/mm ²]
	rolli	ng shear strength	1.25	N/mm²]
	You	ngs modulus parallel	11,600	N/mm²	
	5%-	quantile from Youngs modulus parallel	9,667 🗧	N/mm²	
	You	ngs modulus perpendicular	0 7	N/mm ²]
	she	ar modulus	720 -	N/mm²]
	rolli	ng shear modulus	72 🗧	N/mm²]
	den	sity	380 🗧	kg/m³]
	den	sity mean value	500 🚎	kg/m³]
	in p	lane shear strength	5.5 🗧	N/mm²]
	tors	ional strength	2.5	N/mm²]
	ben	ding strength in-plane	21	N/mm ²]
					0

- With where the edit mode can be entered.
- With 💷 the changes are saved.
- With et al. the chosen material in the sidebar can be removed from the library.
- With materials from a csv file can be imported.
- With the materials from the library can be exported to a csv file.

 row: description of the parameters
 row: units of the parameters
 row: value delimiter: ";"
 Example: Name;f_m,k;f_t,0,k;f_t,90,k;f_c,k;f_c,90,k;f_v,k;f_r,k;E_0;E_0,05;E_90;G;G_r;rho_k;rho_mea n;f_v,k,IP;f_T,k;f_m,k,IP ;N/mm2;N

The user-defined materials are then displayed in the material selection list.

Material	
Mat 1 (User-defined)	
Spruce-Pine-Fir No.3 E90=0	
Northern No.1/No.2 E90=0	
Northern No.3 E90=0	
CL 24h	
CL 28h	
ON_B_1995_1_1_2015	
proHolz 2016	=
Mat 1 (User-defined)	•

Loads

The loads are divided into the dead load (weight of the plate) $(g_{0,k})$, permanent loads $(g_{1,k})$, imposed load (q_k) , snow load (s_k) and wind load (w_k) . This classification is necessary to automatically carry out calculations for different load case combinations.

The plate weight is calculated automatically. The calculation method can be selected in the settings/preferences window. The default calculation method is in accordance with ON B 1991-1-1. A unit weight of 5.5 kN/m³ is assumed in the calculation. However, the unit weight may also be calculated using:

- calculation based on the mean value of density of the chosen material
- calculation based on a user-defined density

When entering the imposed loads, one of the following categories has to be chosen:

- A: Areas for domestic and residential activities
- B: Office areas
- C: Areas where people may congregate (with the exception of areas defined under category A, B and D)
- D: Shopping areas
- E: Areas for storage and industrial activities
- F: Traffic and parking areas for light-duty vehicles
- G: Traffic and parking areas for medium-duty vehicles
- H: Roofs

When entering the snow load, the country code or an altitude above sea level where the structure will be located has to be specified:

- < 1000 m
- > 1000 m
- FIN, IS, N, S

The span of each field can also be modified in the table of distributed loads.

Concentrated loads can be entered in the second table. The position can be defined whether by the local or global x-coordinate.

oads								
Field	Span	g _{0,k}	g _{1,k}	q _k	Category	s _k	Altitude/Region	w _k
1	3.5 m	0.55 kN/m	0.58 kN/m ²	1.2 kN/m ²	A			
2	4 m	0.55 kN/m	0.58 kN/m ²	1.2 kN/m ²	A			
3	4.25 m	0.55 kN/m	0.58 kN/m ²	1.2 kN/m ²	A			
Field	x _{global}	x _{lokal}	G _{1,k}	Q _k	Category	Sk	Altitude/Region	Wk
+ -								

Fire

By choosing "Fire above" and/or "Fire below" in the tab "Fire" a structural fire design has to be carried out. The "Fire duration" is specified in minutes and can be increased (or decreased) by increments of 30 minutes by pressing the up (or down) arrows, or defined by entering a specific duration between 0 minutes and 240 minutes in the allotted box. By ticking the box next to "Fire protection" a layer of fire protection is added to the plate, but the effective protection time of the protection layer needs to be defined.

24 en:clt:hotspot:software:cltdesigner:manual:modul_plate1d_continuousbeam https://www.bspwiki.at/doku.php?id=en:clt:hotspot:software:cltdesigner:manual:modul_plate1d_continuousbeam&rev=158504253

Fire Vibrations
Fire above
✓ Fire below
Fire duration 30 + minutes
Fire protection system
🕑 below
t _{ch} 20 ÷ minutes
$t_f 20$ minutes $r t_f = t_{ch}$
k ₂ 1 -
k ₃ 2 ×
Heat resistant adhesive
✓ consider falling off of charred layers
Without gaps or with bonded edges
k _{fire} 1.15
d ₀ 7 🙀 mm
Charring rate 0.80 🝙 mm/min

For a user-defined cross section, options are given for specifying heat resistant adhesives, presence of grooves, and whether the layers are edge-glued. For proprietary CLT products both values are set automatically and they cannot be changed.

The values k_{fire} (conversion factor 20%-quantiles) and d_0 (layer thickness to take into consideration the influence of temperature exposure) are pre-set and cannot be changed. The charring rate is dependent on the option edge glued or without groove. For a user-defined cross section this value can be changed.

Vibrations

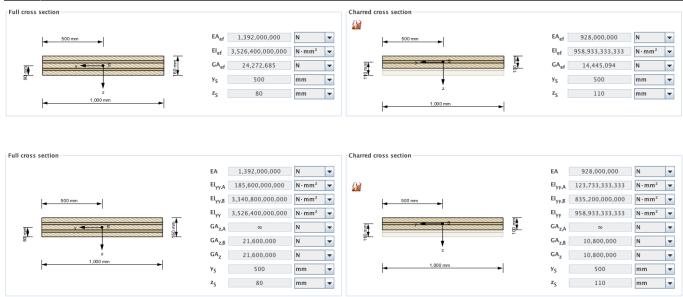
The tab "Vibrations" allows for vibration verification.

Fire V	ibrations								
🖌 Vibra	Vibration verification								
normal I	normal requirements								
ζ	3.0	%							
✓ Cons (conc	ideration of s rete topping)	creed stiffness							
d	6.0	cm							
E	26,000.0	N/mm ²							
El _{screed}	468	kNm²/m							
Support	○ 2-sided	4-sided							
b	5.0	m							
b _w	3.13	m							

For the vibration verification the following specifications are of importance:

- high or normal requirements? This choice will have an influence on the limit values.
- modal damping factor
- consideration of the screed (concrete topping) stiffness
 - $\,\circ\,$ thickness of the screed (concrete topping)
 - $\circ\,$ modulus of elasticity of the screed (concrete topping)
- support (2-sided or 4-sided)
- room width b perpendicular to the load carrying direction

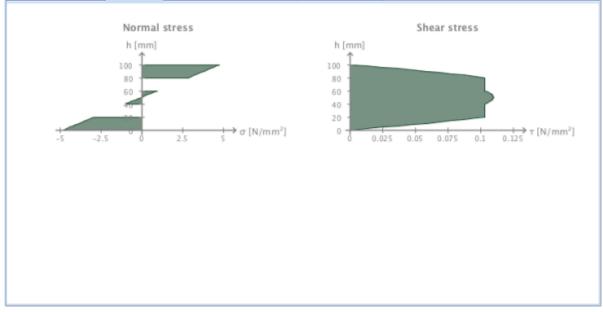
The effective width b_w of the chosen cross section used by the stiffness criteria will be specified.


Results and output

Load combinations are compiled based on the input loads entered in the "Loads" field. The respective k_{mod} - and k_{def} -values can be determined automatically based on the classification of loads (plate weight, wind load, etc.).

Cross section values

Output values generated in the tab "Cross section values" field include the effective stiffness (depending on the chosen calculation method), the position of the centre of mass for the full cross section and also for the charred cross section in case of structural fire design.

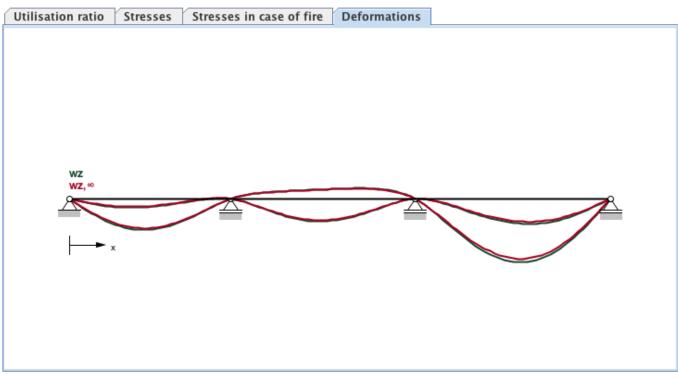


Summary of the results

A summary of the verifications can be retrieved via the tab "Verifications". The utilisation ratios for various limit states are colour-coded indicating if the verification is fulfilled (green), not fulfilled (red) or a more accurate verification is needed (yellow). The locations of the maximum utilisation ratio and the governing combinations are compiled in the same way.

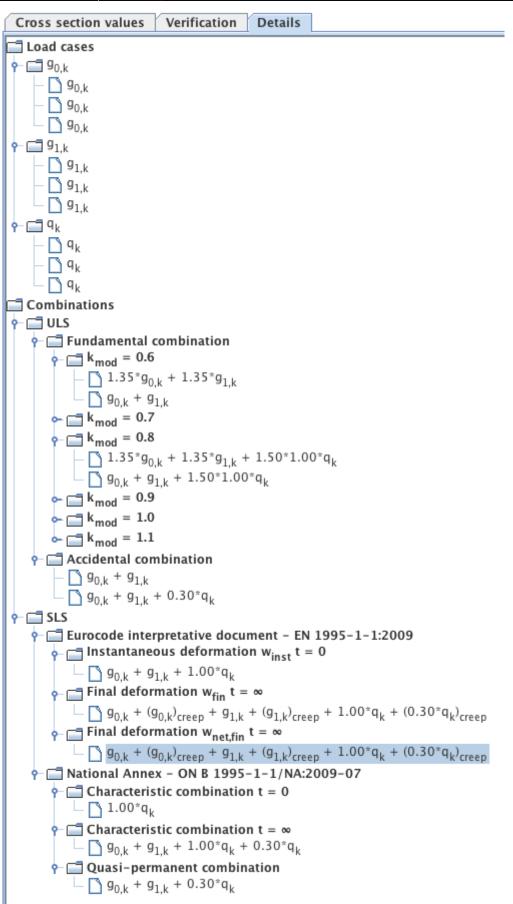
Deflection n_w 75.8 W k_def 0.85 at x = 9.83 m Final deformation w_net,fin t = ∞: g_{0,k} + (g_{0,k})_{creep} + g_{1,k} + (g_{1,k})_{creep} + 1.00° q_k + (0.30° q_k)_{creep} Vibration Vibration verification according to DIN 1052 fulfilled Vibration verification according to EN 1995-1-1 fulfilled Vibration verification verification according to ON B 1995-1-1 //NA:2009-07 fulfilled Vibration verification according to Bamm/Richter fulfilled Vibration verification according to modified Hamm/Richter fulfilled Vibration verification according to modified Hamm/Richter fulfilled	Utilisation ratio				
Note that the number of the		η _M 28.3 %	k _{mod} 0.8	at x = 7.5 m	Fundamental combination: $1.35^*g_{0,k} + 1.35^*g_{1,k} + 1.50^*1.00^*q_k$
SLS Deflection nw 25.8 % k_def 0.85 at x = 9.83 m Final deformation w_net,tin t = ∞: g _{Lk} + (g _{Lk}) _{ortep} + g _{Lk} + (g _{Lk}) _{ortep} + 1.00° g _k + (0.30° g _k) _{ortep} Vibration Vibration verification according to DIN 1052 fulfilled Vibration verification according to EN 1995-1-1 fulfilled Vibration verification according to ON B 1995-1-1 fulfilled Vibration verification according to Hamm/Richter fulfilled Vibration verification according to modified Hamm/Richter fulfilled Utlisation ratio in case of fire	Shear	η _V 13%	k _{med} 0.8	at $x = 7.5 \text{ m}$	Fundamental combination: $1.35^{+}g_{0,k} + 1.35^{+}g_{1,k} + 1.50^{+}1.00^{+}g_{k}$
Deflection nw 75.83 k_def 0.85 at x = 9.83 m Final deformation w_net,fin t = ∞: g_{0,k} + (g_{0,k})_{creep} + g_{1,k} + (g_{1,k})_{creep} + 1.00° q_k + (0.30° q_k)_{creep} Vibration Vibration verification according to DIN 1052 fulfilled Vibration verification according to DIN 1955-1-1 fulfilled Vibration verification according to N B 1995-1-1/NA:2009-07 fulfilled Vibration verification according to modified Hamm/Richter fulfilled Utlisation ratio in case of fire ULS	Bearing pressure	η _{c,90} 5%	k _{mod} 0.8	at $x = 7.5 \text{ m}$	Fundamental combination: $1.35^{\circ}g_{0,k} + 1.35^{\circ}g_{1,k} + 1.50^{\circ}1.00^{\circ}q_{k}$
Vibration Vibration verification according to DIN 1052 fulfilled Vibration verification according to EN 1995-1-1 fulfilled Vibration verification according to EN 1995-1-1/NA:2009-07 fulfilled Vibration verification according to Hamm/Richter fulfilled Vibration verification according to modified Hamm/Richter fulfilled Utlisation ratio in case of fire ULS	SLS				
Vibration verification according to EN 1995-1-1 fulfilled Vibration verification according to ON B 1995-1-1/NA:2009-07 fulfilled Vibration verification according to Hamm/Richter fulfilled Vibration verification according to modified Hamm/Richter fulfilled Utlisation ratio in case of fire	Deflection	η _w 75.8%	k _{def} 0.85	at x = 9.83 m	$\label{eq:Final deformation w} \text{net,fin } t = \infty; \ g_{0,k} + (g_{0,k})_{creep} + g_{1,k} + (g_{1,k})_{creep} + 1.00^* q_k + (0.30^* q_k)_{creep} + 1.00^* q_k + 1.00^* q_$
Vibration verification according to ON B 1995-1-1/NA:2009-07 fulfilled Vibration verification according to Hamm/Richter fulfilled Vibration verification according to modified Hamm/Richter fulfilled Utlisation ratio in case of fire ULS	Vibration	Vibration verifical	tion according to	DIN 1052 fulfil	lled
Vibration verification according to Hamm/Richter fulfilled Vibration verification according to modified Hamm/Richter fulfilled Utlisation ratio in case of fire ULS		Vibration verifical	tion according to	0 EN 1995-1-1 f	fulfilled
Vibration verification according to modified Hamm/Richter fulfilled Utilisation ratio in case of fire ULS					
Utilisation ratio in case of fire ULS					
ULS				a modified Hamr	
			croir according to		n/kichter fullilled
Bending $\eta_{M,fi}$ 15.7 % k_{mod} 1.0 at x = 7.5 m Accidental combination: $g_{0,k} + g_{1,k} + 0.30^{\circ}\eta_k$	Utlisation ratio in case		croin according to		n; Nichter Fullines
	ULS	of fire			

The tab "Utilisation" shows the distribution of the governing utilisation ratios along the beam. Areas in which the results may differ from the exact solution are marked here.

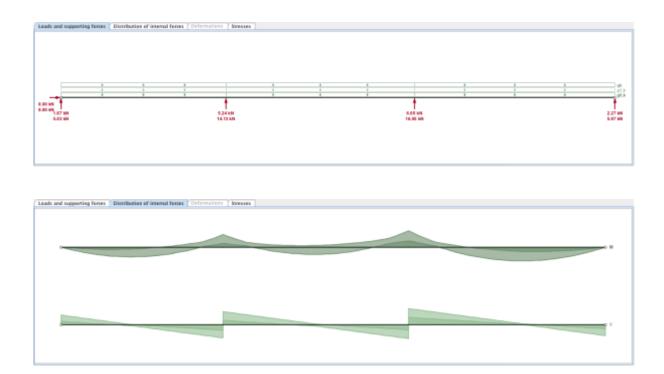

The tab "Deformations" shows the deformed system or the envelope given by the minimum and maximum deformation resulting from the governing SLS verification.

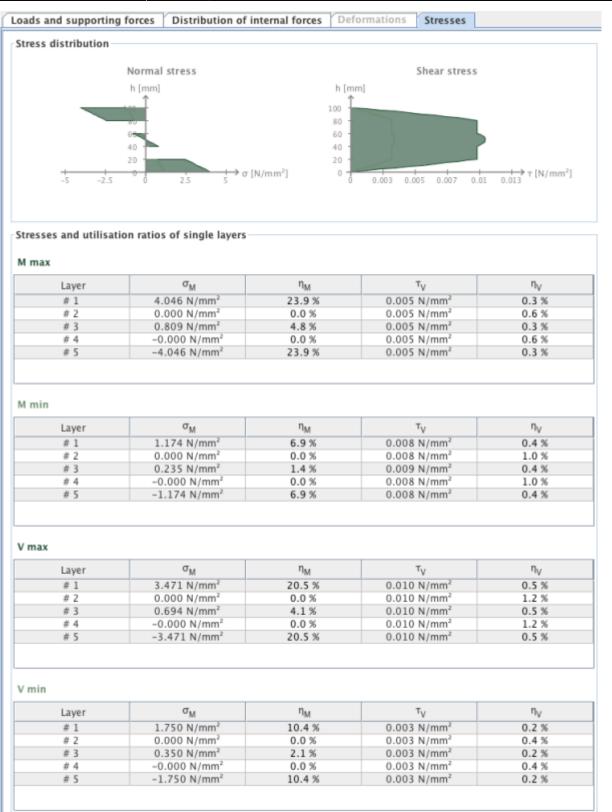
Utilisation ratio

11/15


Stresses Stresses in case of fire Deformations

Detailed results


The detailed results can be retrieved in the tab "Details". The "tree" on the left side offers the possibility to choose the respective load case or combination.



The results of this choice (internal forces, deformations) are then shown for each of the calculation sections of each field (number depending on the information in the settings) in the table on the top right.

	:software:cltde												
Field	×	Mmax	м	v	Maria	M	v	Vmax	M	v	Vmin	H	v
1	0.0 m		-0.00 kN-rs	1.67 kN		-0.00 kN-m	5.03 kN		-0.00 kN-m	5.03 kN		-0.00 k/V/W	1.67 kN
1	0.1 m		0.49 kN-m	4,70 kM		0.16 kN-m	1.51 kN		0.49 kN-m	4.70 kW		0.16 km/m	1.51 kN
1	0.2 m		0.94 kN-m	4.37 kM		0.30 kN-m	1.36 kN		0.54 kN-m	4.37 kW		0.30 km m	1.36-kN
1	0.5 m		1.36 kN-m	4.03 kN		0.43 kN-m	1.21 kN		1.36 kH m	4.03 kN		0.43 k/9-m	1.21 kN
1	0.4 m		1.75 kH-m	3.70 kN		0.54 kN-m	1.05 kN		1.75 kH-m	3.70 kW		0.54 kW-m	1.05 kN
1	0.5 m		2.10 kH-m	3.37 kN		0.84 kN-m	0.90 kN		2.10 kH-m	3.37 kW		0.64 kW-m	0.90 kN
1	0.6 m		2.42 kH-m	3.04 kN		0.72 kH-m	0.75 kN		2.42 kH-m	3.04 kW		0.72 kW-m	0.75 kN
1	0.7 m		2.71 kH-m	2.70 kN		0.79 kH-m	0.60 kN		2.71 kH-m	2.70 kW		0.79 kW-m	0.60 kN
1	0.8 m		2.96 kN-m	2.37 kN		0.84 kN-m	0.44 kN		2.96 kN-m	2.37 kW		0.84 kW-m	0.44 kN
1	0.9 m		3.18 kN-m	2.04 kN		0.88 kN-m	0.29 kN		3.18 kN-m	2.04 kN		0.88 kW-m	0.29 kN
1	1.0 m		3.37 kH-m	1.71 kM		0.90 kN-m	0.14 kN		3.37 kH-m	1.71 kW		0.90 kH-rs	0.14 kN
1	1.1 m		3.52 kH-m	3.37 kN		0.91 kN-m	-0.01 kN		3.52 kN-m	1.37 kN		0.91 km-re	-0.01 kN
1	1.2 m		3.84 kN-m	1.04 kM		0.90 kN-m	-0.17 kN		3.64 kN-m	1.04 km		0.50 km-rs	-0.17 kN
1	1.5 m		3.73 kN-m	0.71 kN		0.88 kN-m	-0.32 kN		3.73 kN-m	0.71 kW		0.88 km m	-0.52 kN
1	1.4 m		3.79 kN-m	0.38 kN		0.84 kN m	-0.47 kN		3.79 kN-m	0.38 kN		0.84 km m	-0.47 kN
1	1.5 m		3.81 kH-m	0.04 kN		0.78 kN-m	-0.62 kN		3.81 kH-m	0.04 kN		0.78 kH-m	-0.62 kN
1	1.6 m		3.79 kH-m	-0.29 kN		0.71 kH-m	-0.78 kN		1.67 kH-m	-0.17 kN		2.83 kH-m	-0.89 kN
1	1.7 m		3.75 kH-m	-0.62 kN		0.63 kN-m	-0.93 kN		1.65 kH-m	-0.33 kN		2.73 kH-m	-1.22 kN
1	1.8 m		3.67 kH-m	-0.95 kW		0.53 kH-m	-1.06 kN		1.61 kH-m	-0.48 kN		2.59 kN-m	-1.56 kN
1	1.9 m		3.56 kH-m	-1.29 kN		0.41 kH-m	-1.23 kN		1.55 kH-m	-0.63 kN		2.41 kN-m	-1.69 kN
1	2.0 m		3.41 kH-m	-1.62 kN		0.28 kN-m	-1.19 kN		1.48 kN-m	-0.78 kN		2.21 kN-m	-2.22 kN
-	2.1 m		3.23 kN-m	-1.95 kN		0.13 kN-m	-1.54 kN		1.40 kN-m	-0.94 kN		1.97 kH-m	-2.55 kN
-	2.2 m		3.02 kN-m	-2.38 kN		-0.03 kH-m	-1.69 kN		1.30 kN-m	-1.09 kN		1.70 kN-m	-2.89 kN
	2.3 m		2.78 kN-m	-2.62.89		-0.21 kN-m	-1.84 kN		1.18 kN-m	-1.24 kN		1.39 879-18	-3.22 kN
	2.4 m		2.50 kM-m	-2.95 kW		-0.40 kN-rs	-2.00 kN		1.05 kN-m	-1.39 kN		1.05 km-re	-3.55 kN
	2.5 m		2.19 kN-m	-3.28 kW		-0.60 kN-re	-2.15 kW		0.90 kN-m	-1.55 kN		0.68 km m	-3.88 k/N
	2.6 m		1.84 kH m	-3.61 kW		-0.83 kN m	-2.30 kN -2.45 kN		0.74 kN-m	-1.70 kN -1.85 kN		0.28 km/m	-4.22 kN -4.55 kN
-	2.7 m		1.46 kN m 1.05 kN m	-3.95 kN -4.28 kN		-1.06 kN-m	-2.61 kN		0.56 kN-m 0.37 kN-m	-2.00 kN		-0.16 kN-m -0.63 kN-m	-4.55 kN
-	2.8 m 2.9 m		0.61 kH-m	-4.61 kW		-1.32 kN-m -1.59 kN-m	-2.51 kW		0.15 kH-m	-2.16 kH		-1.14 kWm	-4.00 KN
-	1.0 m		0.11 kH-m	-4.94 kN		-1.67 kN-m	-2.91 kN		-0.06 kN-m	-2.31 kN		-1.67 kW-m	-5.55 kN
	1.1 m		-0.10 kN-m	-2.46 kN		-2.25 kN-m	-5.66 kN		-0.10 kN-m	-2.46 kM		-2.25 kW-m	-5.66 kN
	1.1 h		-0.56 kW-m	-2.61 kN		-2.15 kH-m	-6.21 kN		-0.56 kN-m	-2.61 kN		-2.85 kW-m	-6.21 kN
	3.3 m		-0.83 89-78	-2.37 89		-3.49 85-78	-6.54 kN		-0.83 kN-m	-2.77 kN		-3.49 kW-m	-6.54 kN
	3.4 m		-1.11 89-0	-2.92 kN		-4.16 kH-rs	-6.88 kN		-1.11 kN-m	-2.92 kN		-4.16 kW-m	-6.88 kN
	3.5 m		-1.41 879-78	-3.07 km		-1.86 179-78	-7.21 kW		-1.41 899-09	-3.07 kN		-4.86 kW-rs	-2.21 km
2	3.5 m		-1.41 89-08	2.16 kM		-1.86 10-11	6.92 kM		-4.86 kN-m	6.92 kN		-1.41 kW-m	2.16 kN
2	3.6 m		-1.20 km/m	2.01 kM		-4.19 1/9 //	6.58 kM		-4.19 km m	0.38 kW		-1.20 kW-m	2.01 kN
2	3.7 m		-1.01 kmm	1.86 kM		-3.55 km m	6.25 kN		-3.55 km m	6.23 kN		-1.01 kWes	1.88 kN
2	3.8 m		-0.83 km m	1.71 kM		-2.94 kN m	5.92 kM		-2.94 kH m	5.92 kW		-0.83 kN/m	1.71 kN
2	3.9 m		-0.67 k%-m	1.55 kM		-2.36 kN m	5.59 kN		-2.36 kN-m	5.59 kN		-0.67 kN-m	1.55 kN
2	4.0 m		-0.46 k/9-m	4.15 kN		-1.88 kN-m	2.51 kN		-1.82 kN-m	5.25 kW		-0.52 kN-m	1.40 kN
2	4.1 m		-0.07 kW-m	3.81 kN		-1.63 kN-m	2.35 kN		-1.31 kN-m	4.92 kN		-0.39 kW-m	1.25 kN
2	4.2 m		0.30 kN-m	3.48 kM		-1.40 kH-m	2.20 kM		-0.84 kH-m	4.59 kW		-0.27 kN-m	1.10 kN

By choosing the desired calculation section in the table, the loads and supporting forces, the distribution of internal forces and the deformations as well as the calculated stresses are shown under different tabs on the bottom right.

From:

https://www.bspwiki.at/ - BSP Wiki

Permanent link:

https://www.bspwiki.at/doku.php?id=en:clt:hotspot:software:cltdesigner:manual:modul_plate1d_continuousbeam&rev=1585042532

Last update: 2020/03/24 10:35

